3.1732 \(\int (d+e x)^m (a^2+2 a b x+b^2 x^2)^2 \, dx\)

Optimal. Leaf size=142 \[ -\frac {4 b^3 (b d-a e) (d+e x)^{m+4}}{e^5 (m+4)}+\frac {6 b^2 (b d-a e)^2 (d+e x)^{m+3}}{e^5 (m+3)}+\frac {(b d-a e)^4 (d+e x)^{m+1}}{e^5 (m+1)}-\frac {4 b (b d-a e)^3 (d+e x)^{m+2}}{e^5 (m+2)}+\frac {b^4 (d+e x)^{m+5}}{e^5 (m+5)} \]

[Out]

(-a*e+b*d)^4*(e*x+d)^(1+m)/e^5/(1+m)-4*b*(-a*e+b*d)^3*(e*x+d)^(2+m)/e^5/(2+m)+6*b^2*(-a*e+b*d)^2*(e*x+d)^(3+m)
/e^5/(3+m)-4*b^3*(-a*e+b*d)*(e*x+d)^(4+m)/e^5/(4+m)+b^4*(e*x+d)^(5+m)/e^5/(5+m)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 142, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {27, 43} \[ \frac {6 b^2 (b d-a e)^2 (d+e x)^{m+3}}{e^5 (m+3)}-\frac {4 b^3 (b d-a e) (d+e x)^{m+4}}{e^5 (m+4)}+\frac {(b d-a e)^4 (d+e x)^{m+1}}{e^5 (m+1)}-\frac {4 b (b d-a e)^3 (d+e x)^{m+2}}{e^5 (m+2)}+\frac {b^4 (d+e x)^{m+5}}{e^5 (m+5)} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^m*(a^2 + 2*a*b*x + b^2*x^2)^2,x]

[Out]

((b*d - a*e)^4*(d + e*x)^(1 + m))/(e^5*(1 + m)) - (4*b*(b*d - a*e)^3*(d + e*x)^(2 + m))/(e^5*(2 + m)) + (6*b^2
*(b*d - a*e)^2*(d + e*x)^(3 + m))/(e^5*(3 + m)) - (4*b^3*(b*d - a*e)*(d + e*x)^(4 + m))/(e^5*(4 + m)) + (b^4*(
d + e*x)^(5 + m))/(e^5*(5 + m))

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int (d+e x)^m \left (a^2+2 a b x+b^2 x^2\right )^2 \, dx &=\int (a+b x)^4 (d+e x)^m \, dx\\ &=\int \left (\frac {(-b d+a e)^4 (d+e x)^m}{e^4}-\frac {4 b (b d-a e)^3 (d+e x)^{1+m}}{e^4}+\frac {6 b^2 (b d-a e)^2 (d+e x)^{2+m}}{e^4}-\frac {4 b^3 (b d-a e) (d+e x)^{3+m}}{e^4}+\frac {b^4 (d+e x)^{4+m}}{e^4}\right ) \, dx\\ &=\frac {(b d-a e)^4 (d+e x)^{1+m}}{e^5 (1+m)}-\frac {4 b (b d-a e)^3 (d+e x)^{2+m}}{e^5 (2+m)}+\frac {6 b^2 (b d-a e)^2 (d+e x)^{3+m}}{e^5 (3+m)}-\frac {4 b^3 (b d-a e) (d+e x)^{4+m}}{e^5 (4+m)}+\frac {b^4 (d+e x)^{5+m}}{e^5 (5+m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 121, normalized size = 0.85 \[ \frac {(d+e x)^{m+1} \left (-\frac {4 b^3 (d+e x)^3 (b d-a e)}{m+4}+\frac {6 b^2 (d+e x)^2 (b d-a e)^2}{m+3}-\frac {4 b (d+e x) (b d-a e)^3}{m+2}+\frac {(b d-a e)^4}{m+1}+\frac {b^4 (d+e x)^4}{m+5}\right )}{e^5} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^m*(a^2 + 2*a*b*x + b^2*x^2)^2,x]

[Out]

((d + e*x)^(1 + m)*((b*d - a*e)^4/(1 + m) - (4*b*(b*d - a*e)^3*(d + e*x))/(2 + m) + (6*b^2*(b*d - a*e)^2*(d +
e*x)^2)/(3 + m) - (4*b^3*(b*d - a*e)*(d + e*x)^3)/(4 + m) + (b^4*(d + e*x)^4)/(5 + m)))/e^5

________________________________________________________________________________________

fricas [B]  time = 0.63, size = 901, normalized size = 6.35 \[ \frac {{\left (a^{4} d e^{4} m^{4} + 24 \, b^{4} d^{5} - 120 \, a b^{3} d^{4} e + 240 \, a^{2} b^{2} d^{3} e^{2} - 240 \, a^{3} b d^{2} e^{3} + 120 \, a^{4} d e^{4} + {\left (b^{4} e^{5} m^{4} + 10 \, b^{4} e^{5} m^{3} + 35 \, b^{4} e^{5} m^{2} + 50 \, b^{4} e^{5} m + 24 \, b^{4} e^{5}\right )} x^{5} + {\left (120 \, a b^{3} e^{5} + {\left (b^{4} d e^{4} + 4 \, a b^{3} e^{5}\right )} m^{4} + 2 \, {\left (3 \, b^{4} d e^{4} + 22 \, a b^{3} e^{5}\right )} m^{3} + {\left (11 \, b^{4} d e^{4} + 164 \, a b^{3} e^{5}\right )} m^{2} + 2 \, {\left (3 \, b^{4} d e^{4} + 122 \, a b^{3} e^{5}\right )} m\right )} x^{4} - 2 \, {\left (2 \, a^{3} b d^{2} e^{3} - 7 \, a^{4} d e^{4}\right )} m^{3} + 2 \, {\left (120 \, a^{2} b^{2} e^{5} + {\left (2 \, a b^{3} d e^{4} + 3 \, a^{2} b^{2} e^{5}\right )} m^{4} - 2 \, {\left (b^{4} d^{2} e^{3} - 8 \, a b^{3} d e^{4} - 18 \, a^{2} b^{2} e^{5}\right )} m^{3} - {\left (6 \, b^{4} d^{2} e^{3} - 34 \, a b^{3} d e^{4} - 147 \, a^{2} b^{2} e^{5}\right )} m^{2} - 2 \, {\left (2 \, b^{4} d^{2} e^{3} - 10 \, a b^{3} d e^{4} - 117 \, a^{2} b^{2} e^{5}\right )} m\right )} x^{3} + {\left (12 \, a^{2} b^{2} d^{3} e^{2} - 48 \, a^{3} b d^{2} e^{3} + 71 \, a^{4} d e^{4}\right )} m^{2} + 2 \, {\left (120 \, a^{3} b e^{5} + {\left (3 \, a^{2} b^{2} d e^{4} + 2 \, a^{3} b e^{5}\right )} m^{4} - 2 \, {\left (3 \, a b^{3} d^{2} e^{3} - 15 \, a^{2} b^{2} d e^{4} - 13 \, a^{3} b e^{5}\right )} m^{3} + {\left (6 \, b^{4} d^{3} e^{2} - 36 \, a b^{3} d^{2} e^{3} + 87 \, a^{2} b^{2} d e^{4} + 118 \, a^{3} b e^{5}\right )} m^{2} + 2 \, {\left (3 \, b^{4} d^{3} e^{2} - 15 \, a b^{3} d^{2} e^{3} + 30 \, a^{2} b^{2} d e^{4} + 107 \, a^{3} b e^{5}\right )} m\right )} x^{2} - 2 \, {\left (12 \, a b^{3} d^{4} e - 54 \, a^{2} b^{2} d^{3} e^{2} + 94 \, a^{3} b d^{2} e^{3} - 77 \, a^{4} d e^{4}\right )} m + {\left (120 \, a^{4} e^{5} + {\left (4 \, a^{3} b d e^{4} + a^{4} e^{5}\right )} m^{4} - 2 \, {\left (6 \, a^{2} b^{2} d^{2} e^{3} - 24 \, a^{3} b d e^{4} - 7 \, a^{4} e^{5}\right )} m^{3} + {\left (24 \, a b^{3} d^{3} e^{2} - 108 \, a^{2} b^{2} d^{2} e^{3} + 188 \, a^{3} b d e^{4} + 71 \, a^{4} e^{5}\right )} m^{2} - 2 \, {\left (12 \, b^{4} d^{4} e - 60 \, a b^{3} d^{3} e^{2} + 120 \, a^{2} b^{2} d^{2} e^{3} - 120 \, a^{3} b d e^{4} - 77 \, a^{4} e^{5}\right )} m\right )} x\right )} {\left (e x + d\right )}^{m}}{e^{5} m^{5} + 15 \, e^{5} m^{4} + 85 \, e^{5} m^{3} + 225 \, e^{5} m^{2} + 274 \, e^{5} m + 120 \, e^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(b^2*x^2+2*a*b*x+a^2)^2,x, algorithm="fricas")

[Out]

(a^4*d*e^4*m^4 + 24*b^4*d^5 - 120*a*b^3*d^4*e + 240*a^2*b^2*d^3*e^2 - 240*a^3*b*d^2*e^3 + 120*a^4*d*e^4 + (b^4
*e^5*m^4 + 10*b^4*e^5*m^3 + 35*b^4*e^5*m^2 + 50*b^4*e^5*m + 24*b^4*e^5)*x^5 + (120*a*b^3*e^5 + (b^4*d*e^4 + 4*
a*b^3*e^5)*m^4 + 2*(3*b^4*d*e^4 + 22*a*b^3*e^5)*m^3 + (11*b^4*d*e^4 + 164*a*b^3*e^5)*m^2 + 2*(3*b^4*d*e^4 + 12
2*a*b^3*e^5)*m)*x^4 - 2*(2*a^3*b*d^2*e^3 - 7*a^4*d*e^4)*m^3 + 2*(120*a^2*b^2*e^5 + (2*a*b^3*d*e^4 + 3*a^2*b^2*
e^5)*m^4 - 2*(b^4*d^2*e^3 - 8*a*b^3*d*e^4 - 18*a^2*b^2*e^5)*m^3 - (6*b^4*d^2*e^3 - 34*a*b^3*d*e^4 - 147*a^2*b^
2*e^5)*m^2 - 2*(2*b^4*d^2*e^3 - 10*a*b^3*d*e^4 - 117*a^2*b^2*e^5)*m)*x^3 + (12*a^2*b^2*d^3*e^2 - 48*a^3*b*d^2*
e^3 + 71*a^4*d*e^4)*m^2 + 2*(120*a^3*b*e^5 + (3*a^2*b^2*d*e^4 + 2*a^3*b*e^5)*m^4 - 2*(3*a*b^3*d^2*e^3 - 15*a^2
*b^2*d*e^4 - 13*a^3*b*e^5)*m^3 + (6*b^4*d^3*e^2 - 36*a*b^3*d^2*e^3 + 87*a^2*b^2*d*e^4 + 118*a^3*b*e^5)*m^2 + 2
*(3*b^4*d^3*e^2 - 15*a*b^3*d^2*e^3 + 30*a^2*b^2*d*e^4 + 107*a^3*b*e^5)*m)*x^2 - 2*(12*a*b^3*d^4*e - 54*a^2*b^2
*d^3*e^2 + 94*a^3*b*d^2*e^3 - 77*a^4*d*e^4)*m + (120*a^4*e^5 + (4*a^3*b*d*e^4 + a^4*e^5)*m^4 - 2*(6*a^2*b^2*d^
2*e^3 - 24*a^3*b*d*e^4 - 7*a^4*e^5)*m^3 + (24*a*b^3*d^3*e^2 - 108*a^2*b^2*d^2*e^3 + 188*a^3*b*d*e^4 + 71*a^4*e
^5)*m^2 - 2*(12*b^4*d^4*e - 60*a*b^3*d^3*e^2 + 120*a^2*b^2*d^2*e^3 - 120*a^3*b*d*e^4 - 77*a^4*e^5)*m)*x)*(e*x
+ d)^m/(e^5*m^5 + 15*e^5*m^4 + 85*e^5*m^3 + 225*e^5*m^2 + 274*e^5*m + 120*e^5)

________________________________________________________________________________________

giac [B]  time = 0.22, size = 1529, normalized size = 10.77 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(b^2*x^2+2*a*b*x+a^2)^2,x, algorithm="giac")

[Out]

((x*e + d)^m*b^4*m^4*x^5*e^5 + (x*e + d)^m*b^4*d*m^4*x^4*e^4 + 4*(x*e + d)^m*a*b^3*m^4*x^4*e^5 + 10*(x*e + d)^
m*b^4*m^3*x^5*e^5 + 4*(x*e + d)^m*a*b^3*d*m^4*x^3*e^4 + 6*(x*e + d)^m*b^4*d*m^3*x^4*e^4 - 4*(x*e + d)^m*b^4*d^
2*m^3*x^3*e^3 + 6*(x*e + d)^m*a^2*b^2*m^4*x^3*e^5 + 44*(x*e + d)^m*a*b^3*m^3*x^4*e^5 + 35*(x*e + d)^m*b^4*m^2*
x^5*e^5 + 6*(x*e + d)^m*a^2*b^2*d*m^4*x^2*e^4 + 32*(x*e + d)^m*a*b^3*d*m^3*x^3*e^4 + 11*(x*e + d)^m*b^4*d*m^2*
x^4*e^4 - 12*(x*e + d)^m*a*b^3*d^2*m^3*x^2*e^3 - 12*(x*e + d)^m*b^4*d^2*m^2*x^3*e^3 + 12*(x*e + d)^m*b^4*d^3*m
^2*x^2*e^2 + 4*(x*e + d)^m*a^3*b*m^4*x^2*e^5 + 72*(x*e + d)^m*a^2*b^2*m^3*x^3*e^5 + 164*(x*e + d)^m*a*b^3*m^2*
x^4*e^5 + 50*(x*e + d)^m*b^4*m*x^5*e^5 + 4*(x*e + d)^m*a^3*b*d*m^4*x*e^4 + 60*(x*e + d)^m*a^2*b^2*d*m^3*x^2*e^
4 + 68*(x*e + d)^m*a*b^3*d*m^2*x^3*e^4 + 6*(x*e + d)^m*b^4*d*m*x^4*e^4 - 12*(x*e + d)^m*a^2*b^2*d^2*m^3*x*e^3
- 72*(x*e + d)^m*a*b^3*d^2*m^2*x^2*e^3 - 8*(x*e + d)^m*b^4*d^2*m*x^3*e^3 + 24*(x*e + d)^m*a*b^3*d^3*m^2*x*e^2
+ 12*(x*e + d)^m*b^4*d^3*m*x^2*e^2 - 24*(x*e + d)^m*b^4*d^4*m*x*e + (x*e + d)^m*a^4*m^4*x*e^5 + 52*(x*e + d)^m
*a^3*b*m^3*x^2*e^5 + 294*(x*e + d)^m*a^2*b^2*m^2*x^3*e^5 + 244*(x*e + d)^m*a*b^3*m*x^4*e^5 + 24*(x*e + d)^m*b^
4*x^5*e^5 + (x*e + d)^m*a^4*d*m^4*e^4 + 48*(x*e + d)^m*a^3*b*d*m^3*x*e^4 + 174*(x*e + d)^m*a^2*b^2*d*m^2*x^2*e
^4 + 40*(x*e + d)^m*a*b^3*d*m*x^3*e^4 - 4*(x*e + d)^m*a^3*b*d^2*m^3*e^3 - 108*(x*e + d)^m*a^2*b^2*d^2*m^2*x*e^
3 - 60*(x*e + d)^m*a*b^3*d^2*m*x^2*e^3 + 12*(x*e + d)^m*a^2*b^2*d^3*m^2*e^2 + 120*(x*e + d)^m*a*b^3*d^3*m*x*e^
2 - 24*(x*e + d)^m*a*b^3*d^4*m*e + 24*(x*e + d)^m*b^4*d^5 + 14*(x*e + d)^m*a^4*m^3*x*e^5 + 236*(x*e + d)^m*a^3
*b*m^2*x^2*e^5 + 468*(x*e + d)^m*a^2*b^2*m*x^3*e^5 + 120*(x*e + d)^m*a*b^3*x^4*e^5 + 14*(x*e + d)^m*a^4*d*m^3*
e^4 + 188*(x*e + d)^m*a^3*b*d*m^2*x*e^4 + 120*(x*e + d)^m*a^2*b^2*d*m*x^2*e^4 - 48*(x*e + d)^m*a^3*b*d^2*m^2*e
^3 - 240*(x*e + d)^m*a^2*b^2*d^2*m*x*e^3 + 108*(x*e + d)^m*a^2*b^2*d^3*m*e^2 - 120*(x*e + d)^m*a*b^3*d^4*e + 7
1*(x*e + d)^m*a^4*m^2*x*e^5 + 428*(x*e + d)^m*a^3*b*m*x^2*e^5 + 240*(x*e + d)^m*a^2*b^2*x^3*e^5 + 71*(x*e + d)
^m*a^4*d*m^2*e^4 + 240*(x*e + d)^m*a^3*b*d*m*x*e^4 - 188*(x*e + d)^m*a^3*b*d^2*m*e^3 + 240*(x*e + d)^m*a^2*b^2
*d^3*e^2 + 154*(x*e + d)^m*a^4*m*x*e^5 + 240*(x*e + d)^m*a^3*b*x^2*e^5 + 154*(x*e + d)^m*a^4*d*m*e^4 - 240*(x*
e + d)^m*a^3*b*d^2*e^3 + 120*(x*e + d)^m*a^4*x*e^5 + 120*(x*e + d)^m*a^4*d*e^4)/(m^5*e^5 + 15*m^4*e^5 + 85*m^3
*e^5 + 225*m^2*e^5 + 274*m*e^5 + 120*e^5)

________________________________________________________________________________________

maple [B]  time = 0.05, size = 768, normalized size = 5.41 \[ \frac {\left (b^{4} e^{4} m^{4} x^{4}+4 a \,b^{3} e^{4} m^{4} x^{3}+10 b^{4} e^{4} m^{3} x^{4}+6 a^{2} b^{2} e^{4} m^{4} x^{2}+44 a \,b^{3} e^{4} m^{3} x^{3}-4 b^{4} d \,e^{3} m^{3} x^{3}+35 b^{4} e^{4} m^{2} x^{4}+4 a^{3} b \,e^{4} m^{4} x +72 a^{2} b^{2} e^{4} m^{3} x^{2}-12 a \,b^{3} d \,e^{3} m^{3} x^{2}+164 a \,b^{3} e^{4} m^{2} x^{3}-24 b^{4} d \,e^{3} m^{2} x^{3}+50 b^{4} e^{4} m \,x^{4}+a^{4} e^{4} m^{4}+52 a^{3} b \,e^{4} m^{3} x -12 a^{2} b^{2} d \,e^{3} m^{3} x +294 a^{2} b^{2} e^{4} m^{2} x^{2}-96 a \,b^{3} d \,e^{3} m^{2} x^{2}+244 a \,b^{3} e^{4} m \,x^{3}+12 b^{4} d^{2} e^{2} m^{2} x^{2}-44 b^{4} d \,e^{3} m \,x^{3}+24 b^{4} x^{4} e^{4}+14 a^{4} e^{4} m^{3}-4 a^{3} b d \,e^{3} m^{3}+236 a^{3} b \,e^{4} m^{2} x -120 a^{2} b^{2} d \,e^{3} m^{2} x +468 a^{2} b^{2} e^{4} m \,x^{2}+24 a \,b^{3} d^{2} e^{2} m^{2} x -204 a \,b^{3} d \,e^{3} m \,x^{2}+120 a \,b^{3} e^{4} x^{3}+36 b^{4} d^{2} e^{2} m \,x^{2}-24 b^{4} d \,e^{3} x^{3}+71 a^{4} e^{4} m^{2}-48 a^{3} b d \,e^{3} m^{2}+428 a^{3} b \,e^{4} m x +12 a^{2} b^{2} d^{2} e^{2} m^{2}-348 a^{2} b^{2} d \,e^{3} m x +240 a^{2} b^{2} e^{4} x^{2}+144 a \,b^{3} d^{2} e^{2} m x -120 a \,b^{3} d \,e^{3} x^{2}-24 b^{4} d^{3} e m x +24 b^{4} d^{2} e^{2} x^{2}+154 a^{4} e^{4} m -188 a^{3} b d \,e^{3} m +240 a^{3} b \,e^{4} x +108 a^{2} b^{2} d^{2} e^{2} m -240 a^{2} b^{2} d \,e^{3} x -24 a \,b^{3} d^{3} e m +120 a \,b^{3} d^{2} e^{2} x -24 b^{4} d^{3} e x +120 a^{4} e^{4}-240 a^{3} b d \,e^{3}+240 a^{2} b^{2} d^{2} e^{2}-120 a \,b^{3} d^{3} e +24 b^{4} d^{4}\right ) \left (e x +d \right )^{m +1}}{\left (m^{5}+15 m^{4}+85 m^{3}+225 m^{2}+274 m +120\right ) e^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^m*(b^2*x^2+2*a*b*x+a^2)^2,x)

[Out]

(e*x+d)^(m+1)*(b^4*e^4*m^4*x^4+4*a*b^3*e^4*m^4*x^3+10*b^4*e^4*m^3*x^4+6*a^2*b^2*e^4*m^4*x^2+44*a*b^3*e^4*m^3*x
^3-4*b^4*d*e^3*m^3*x^3+35*b^4*e^4*m^2*x^4+4*a^3*b*e^4*m^4*x+72*a^2*b^2*e^4*m^3*x^2-12*a*b^3*d*e^3*m^3*x^2+164*
a*b^3*e^4*m^2*x^3-24*b^4*d*e^3*m^2*x^3+50*b^4*e^4*m*x^4+a^4*e^4*m^4+52*a^3*b*e^4*m^3*x-12*a^2*b^2*d*e^3*m^3*x+
294*a^2*b^2*e^4*m^2*x^2-96*a*b^3*d*e^3*m^2*x^2+244*a*b^3*e^4*m*x^3+12*b^4*d^2*e^2*m^2*x^2-44*b^4*d*e^3*m*x^3+2
4*b^4*e^4*x^4+14*a^4*e^4*m^3-4*a^3*b*d*e^3*m^3+236*a^3*b*e^4*m^2*x-120*a^2*b^2*d*e^3*m^2*x+468*a^2*b^2*e^4*m*x
^2+24*a*b^3*d^2*e^2*m^2*x-204*a*b^3*d*e^3*m*x^2+120*a*b^3*e^4*x^3+36*b^4*d^2*e^2*m*x^2-24*b^4*d*e^3*x^3+71*a^4
*e^4*m^2-48*a^3*b*d*e^3*m^2+428*a^3*b*e^4*m*x+12*a^2*b^2*d^2*e^2*m^2-348*a^2*b^2*d*e^3*m*x+240*a^2*b^2*e^4*x^2
+144*a*b^3*d^2*e^2*m*x-120*a*b^3*d*e^3*x^2-24*b^4*d^3*e*m*x+24*b^4*d^2*e^2*x^2+154*a^4*e^4*m-188*a^3*b*d*e^3*m
+240*a^3*b*e^4*x+108*a^2*b^2*d^2*e^2*m-240*a^2*b^2*d*e^3*x-24*a*b^3*d^3*e*m+120*a*b^3*d^2*e^2*x-24*b^4*d^3*e*x
+120*a^4*e^4-240*a^3*b*d*e^3+240*a^2*b^2*d^2*e^2-120*a*b^3*d^3*e+24*b^4*d^4)/e^5/(m^5+15*m^4+85*m^3+225*m^2+27
4*m+120)

________________________________________________________________________________________

maxima [B]  time = 1.19, size = 392, normalized size = 2.76 \[ \frac {4 \, {\left (e^{2} {\left (m + 1\right )} x^{2} + d e m x - d^{2}\right )} {\left (e x + d\right )}^{m} a^{3} b}{{\left (m^{2} + 3 \, m + 2\right )} e^{2}} + \frac {{\left (e x + d\right )}^{m + 1} a^{4}}{e {\left (m + 1\right )}} + \frac {6 \, {\left ({\left (m^{2} + 3 \, m + 2\right )} e^{3} x^{3} + {\left (m^{2} + m\right )} d e^{2} x^{2} - 2 \, d^{2} e m x + 2 \, d^{3}\right )} {\left (e x + d\right )}^{m} a^{2} b^{2}}{{\left (m^{3} + 6 \, m^{2} + 11 \, m + 6\right )} e^{3}} + \frac {4 \, {\left ({\left (m^{3} + 6 \, m^{2} + 11 \, m + 6\right )} e^{4} x^{4} + {\left (m^{3} + 3 \, m^{2} + 2 \, m\right )} d e^{3} x^{3} - 3 \, {\left (m^{2} + m\right )} d^{2} e^{2} x^{2} + 6 \, d^{3} e m x - 6 \, d^{4}\right )} {\left (e x + d\right )}^{m} a b^{3}}{{\left (m^{4} + 10 \, m^{3} + 35 \, m^{2} + 50 \, m + 24\right )} e^{4}} + \frac {{\left ({\left (m^{4} + 10 \, m^{3} + 35 \, m^{2} + 50 \, m + 24\right )} e^{5} x^{5} + {\left (m^{4} + 6 \, m^{3} + 11 \, m^{2} + 6 \, m\right )} d e^{4} x^{4} - 4 \, {\left (m^{3} + 3 \, m^{2} + 2 \, m\right )} d^{2} e^{3} x^{3} + 12 \, {\left (m^{2} + m\right )} d^{3} e^{2} x^{2} - 24 \, d^{4} e m x + 24 \, d^{5}\right )} {\left (e x + d\right )}^{m} b^{4}}{{\left (m^{5} + 15 \, m^{4} + 85 \, m^{3} + 225 \, m^{2} + 274 \, m + 120\right )} e^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(b^2*x^2+2*a*b*x+a^2)^2,x, algorithm="maxima")

[Out]

4*(e^2*(m + 1)*x^2 + d*e*m*x - d^2)*(e*x + d)^m*a^3*b/((m^2 + 3*m + 2)*e^2) + (e*x + d)^(m + 1)*a^4/(e*(m + 1)
) + 6*((m^2 + 3*m + 2)*e^3*x^3 + (m^2 + m)*d*e^2*x^2 - 2*d^2*e*m*x + 2*d^3)*(e*x + d)^m*a^2*b^2/((m^3 + 6*m^2
+ 11*m + 6)*e^3) + 4*((m^3 + 6*m^2 + 11*m + 6)*e^4*x^4 + (m^3 + 3*m^2 + 2*m)*d*e^3*x^3 - 3*(m^2 + m)*d^2*e^2*x
^2 + 6*d^3*e*m*x - 6*d^4)*(e*x + d)^m*a*b^3/((m^4 + 10*m^3 + 35*m^2 + 50*m + 24)*e^4) + ((m^4 + 10*m^3 + 35*m^
2 + 50*m + 24)*e^5*x^5 + (m^4 + 6*m^3 + 11*m^2 + 6*m)*d*e^4*x^4 - 4*(m^3 + 3*m^2 + 2*m)*d^2*e^3*x^3 + 12*(m^2
+ m)*d^3*e^2*x^2 - 24*d^4*e*m*x + 24*d^5)*(e*x + d)^m*b^4/((m^5 + 15*m^4 + 85*m^3 + 225*m^2 + 274*m + 120)*e^5
)

________________________________________________________________________________________

mupad [B]  time = 1.04, size = 831, normalized size = 5.85 \[ \frac {{\left (d+e\,x\right )}^m\,\left (a^4\,d\,e^4\,m^4+14\,a^4\,d\,e^4\,m^3+71\,a^4\,d\,e^4\,m^2+154\,a^4\,d\,e^4\,m+120\,a^4\,d\,e^4-4\,a^3\,b\,d^2\,e^3\,m^3-48\,a^3\,b\,d^2\,e^3\,m^2-188\,a^3\,b\,d^2\,e^3\,m-240\,a^3\,b\,d^2\,e^3+12\,a^2\,b^2\,d^3\,e^2\,m^2+108\,a^2\,b^2\,d^3\,e^2\,m+240\,a^2\,b^2\,d^3\,e^2-24\,a\,b^3\,d^4\,e\,m-120\,a\,b^3\,d^4\,e+24\,b^4\,d^5\right )}{e^5\,\left (m^5+15\,m^4+85\,m^3+225\,m^2+274\,m+120\right )}+\frac {x\,{\left (d+e\,x\right )}^m\,\left (a^4\,e^5\,m^4+14\,a^4\,e^5\,m^3+71\,a^4\,e^5\,m^2+154\,a^4\,e^5\,m+120\,a^4\,e^5+4\,a^3\,b\,d\,e^4\,m^4+48\,a^3\,b\,d\,e^4\,m^3+188\,a^3\,b\,d\,e^4\,m^2+240\,a^3\,b\,d\,e^4\,m-12\,a^2\,b^2\,d^2\,e^3\,m^3-108\,a^2\,b^2\,d^2\,e^3\,m^2-240\,a^2\,b^2\,d^2\,e^3\,m+24\,a\,b^3\,d^3\,e^2\,m^2+120\,a\,b^3\,d^3\,e^2\,m-24\,b^4\,d^4\,e\,m\right )}{e^5\,\left (m^5+15\,m^4+85\,m^3+225\,m^2+274\,m+120\right )}+\frac {b^4\,x^5\,{\left (d+e\,x\right )}^m\,\left (m^4+10\,m^3+35\,m^2+50\,m+24\right )}{m^5+15\,m^4+85\,m^3+225\,m^2+274\,m+120}+\frac {2\,b^2\,x^3\,{\left (d+e\,x\right )}^m\,\left (m^2+3\,m+2\right )\,\left (3\,a^2\,e^2\,m^2+27\,a^2\,e^2\,m+60\,a^2\,e^2+2\,a\,b\,d\,e\,m^2+10\,a\,b\,d\,e\,m-2\,b^2\,d^2\,m\right )}{e^2\,\left (m^5+15\,m^4+85\,m^3+225\,m^2+274\,m+120\right )}+\frac {b^3\,x^4\,{\left (d+e\,x\right )}^m\,\left (20\,a\,e+4\,a\,e\,m+b\,d\,m\right )\,\left (m^3+6\,m^2+11\,m+6\right )}{e\,\left (m^5+15\,m^4+85\,m^3+225\,m^2+274\,m+120\right )}+\frac {2\,b\,x^2\,\left (m+1\right )\,{\left (d+e\,x\right )}^m\,\left (2\,a^3\,e^3\,m^3+24\,a^3\,e^3\,m^2+94\,a^3\,e^3\,m+120\,a^3\,e^3+3\,a^2\,b\,d\,e^2\,m^3+27\,a^2\,b\,d\,e^2\,m^2+60\,a^2\,b\,d\,e^2\,m-6\,a\,b^2\,d^2\,e\,m^2-30\,a\,b^2\,d^2\,e\,m+6\,b^3\,d^3\,m\right )}{e^3\,\left (m^5+15\,m^4+85\,m^3+225\,m^2+274\,m+120\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^m*(a^2 + b^2*x^2 + 2*a*b*x)^2,x)

[Out]

((d + e*x)^m*(24*b^4*d^5 + 120*a^4*d*e^4 - 240*a^3*b*d^2*e^3 + 71*a^4*d*e^4*m^2 + 14*a^4*d*e^4*m^3 + a^4*d*e^4
*m^4 + 240*a^2*b^2*d^3*e^2 - 120*a*b^3*d^4*e + 154*a^4*d*e^4*m - 24*a*b^3*d^4*e*m + 12*a^2*b^2*d^3*e^2*m^2 - 1
88*a^3*b*d^2*e^3*m + 108*a^2*b^2*d^3*e^2*m - 48*a^3*b*d^2*e^3*m^2 - 4*a^3*b*d^2*e^3*m^3))/(e^5*(274*m + 225*m^
2 + 85*m^3 + 15*m^4 + m^5 + 120)) + (x*(d + e*x)^m*(120*a^4*e^5 + 154*a^4*e^5*m + 71*a^4*e^5*m^2 + 14*a^4*e^5*
m^3 + a^4*e^5*m^4 - 24*b^4*d^4*e*m + 240*a^3*b*d*e^4*m - 108*a^2*b^2*d^2*e^3*m^2 - 12*a^2*b^2*d^2*e^3*m^3 + 12
0*a*b^3*d^3*e^2*m + 188*a^3*b*d*e^4*m^2 + 48*a^3*b*d*e^4*m^3 + 4*a^3*b*d*e^4*m^4 - 240*a^2*b^2*d^2*e^3*m + 24*
a*b^3*d^3*e^2*m^2))/(e^5*(274*m + 225*m^2 + 85*m^3 + 15*m^4 + m^5 + 120)) + (b^4*x^5*(d + e*x)^m*(50*m + 35*m^
2 + 10*m^3 + m^4 + 24))/(274*m + 225*m^2 + 85*m^3 + 15*m^4 + m^5 + 120) + (2*b^2*x^3*(d + e*x)^m*(3*m + m^2 +
2)*(60*a^2*e^2 + 27*a^2*e^2*m - 2*b^2*d^2*m + 3*a^2*e^2*m^2 + 10*a*b*d*e*m + 2*a*b*d*e*m^2))/(e^2*(274*m + 225
*m^2 + 85*m^3 + 15*m^4 + m^5 + 120)) + (b^3*x^4*(d + e*x)^m*(20*a*e + 4*a*e*m + b*d*m)*(11*m + 6*m^2 + m^3 + 6
))/(e*(274*m + 225*m^2 + 85*m^3 + 15*m^4 + m^5 + 120)) + (2*b*x^2*(m + 1)*(d + e*x)^m*(120*a^3*e^3 + 94*a^3*e^
3*m + 6*b^3*d^3*m + 24*a^3*e^3*m^2 + 2*a^3*e^3*m^3 - 30*a*b^2*d^2*e*m + 60*a^2*b*d*e^2*m - 6*a*b^2*d^2*e*m^2 +
 27*a^2*b*d*e^2*m^2 + 3*a^2*b*d*e^2*m^3))/(e^3*(274*m + 225*m^2 + 85*m^3 + 15*m^4 + m^5 + 120))

________________________________________________________________________________________

sympy [A]  time = 9.03, size = 8719, normalized size = 61.40 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**m*(b**2*x**2+2*a*b*x+a**2)**2,x)

[Out]

Piecewise((d**m*(a**4*x + 2*a**3*b*x**2 + 2*a**2*b**2*x**3 + a*b**3*x**4 + b**4*x**5/5), Eq(e, 0)), (-3*a**4*e
**4/(12*d**4*e**5 + 48*d**3*e**6*x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) - 4*a**3*b*d*e**3/(12*
d**4*e**5 + 48*d**3*e**6*x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) - 16*a**3*b*e**4*x/(12*d**4*e*
*5 + 48*d**3*e**6*x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) - 6*a**2*b**2*d**2*e**2/(12*d**4*e**5
 + 48*d**3*e**6*x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) - 24*a**2*b**2*d*e**3*x/(12*d**4*e**5 +
 48*d**3*e**6*x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) - 36*a**2*b**2*e**4*x**2/(12*d**4*e**5 +
48*d**3*e**6*x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) - 12*a*b**3*d**3*e/(12*d**4*e**5 + 48*d**3
*e**6*x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) - 48*a*b**3*d**2*e**2*x/(12*d**4*e**5 + 48*d**3*e
**6*x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) - 72*a*b**3*d*e**3*x**2/(12*d**4*e**5 + 48*d**3*e**
6*x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) - 48*a*b**3*e**4*x**3/(12*d**4*e**5 + 48*d**3*e**6*x
+ 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) + 12*b**4*d**4*log(d/e + x)/(12*d**4*e**5 + 48*d**3*e**6*
x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) + 25*b**4*d**4/(12*d**4*e**5 + 48*d**3*e**6*x + 72*d**2
*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) + 48*b**4*d**3*e*x*log(d/e + x)/(12*d**4*e**5 + 48*d**3*e**6*x + 7
2*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) + 88*b**4*d**3*e*x/(12*d**4*e**5 + 48*d**3*e**6*x + 72*d**2*
e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) + 72*b**4*d**2*e**2*x**2*log(d/e + x)/(12*d**4*e**5 + 48*d**3*e**6*
x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) + 108*b**4*d**2*e**2*x**2/(12*d**4*e**5 + 48*d**3*e**6*
x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) + 48*b**4*d*e**3*x**3*log(d/e + x)/(12*d**4*e**5 + 48*d
**3*e**6*x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) + 48*b**4*d*e**3*x**3/(12*d**4*e**5 + 48*d**3*
e**6*x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4) + 12*b**4*e**4*x**4*log(d/e + x)/(12*d**4*e**5 + 4
8*d**3*e**6*x + 72*d**2*e**7*x**2 + 48*d*e**8*x**3 + 12*e**9*x**4), Eq(m, -5)), (-a**4*e**4/(3*d**3*e**5 + 9*d
**2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3) - 2*a**3*b*d*e**3/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e
**8*x**3) - 6*a**3*b*e**4*x/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3) - 6*a**2*b**2*d**2*e**
2/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3) - 18*a**2*b**2*d*e**3*x/(3*d**3*e**5 + 9*d**2*e*
*6*x + 9*d*e**7*x**2 + 3*e**8*x**3) - 18*a**2*b**2*e**4*x**2/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*
e**8*x**3) + 12*a*b**3*d**3*e*log(d/e + x)/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3) + 22*a*
b**3*d**3*e/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3) + 36*a*b**3*d**2*e**2*x*log(d/e + x)/(
3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3) + 54*a*b**3*d**2*e**2*x/(3*d**3*e**5 + 9*d**2*e**6*
x + 9*d*e**7*x**2 + 3*e**8*x**3) + 36*a*b**3*d*e**3*x**2*log(d/e + x)/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*
x**2 + 3*e**8*x**3) + 36*a*b**3*d*e**3*x**2/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3) + 12*a
*b**3*e**4*x**3*log(d/e + x)/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3) - 12*b**4*d**4*log(d/
e + x)/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3) - 22*b**4*d**4/(3*d**3*e**5 + 9*d**2*e**6*x
 + 9*d*e**7*x**2 + 3*e**8*x**3) - 36*b**4*d**3*e*x*log(d/e + x)/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 +
 3*e**8*x**3) - 54*b**4*d**3*e*x/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3) - 36*b**4*d**2*e*
*2*x**2*log(d/e + x)/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3) - 36*b**4*d**2*e**2*x**2/(3*d
**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3) - 12*b**4*d*e**3*x**3*log(d/e + x)/(3*d**3*e**5 + 9*d*
*2*e**6*x + 9*d*e**7*x**2 + 3*e**8*x**3) + 3*b**4*e**4*x**4/(3*d**3*e**5 + 9*d**2*e**6*x + 9*d*e**7*x**2 + 3*e
**8*x**3), Eq(m, -4)), (-a**4*e**4/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2) - 4*a**3*b*d*e**3/(2*d**2*e**5 + 4
*d*e**6*x + 2*e**7*x**2) - 8*a**3*b*e**4*x/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2) + 12*a**2*b**2*d**2*e**2*l
og(d/e + x)/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2) + 18*a**2*b**2*d**2*e**2/(2*d**2*e**5 + 4*d*e**6*x + 2*e*
*7*x**2) + 24*a**2*b**2*d*e**3*x*log(d/e + x)/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2) + 24*a**2*b**2*d*e**3*x
/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2) + 12*a**2*b**2*e**4*x**2*log(d/e + x)/(2*d**2*e**5 + 4*d*e**6*x + 2*
e**7*x**2) - 24*a*b**3*d**3*e*log(d/e + x)/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2) - 36*a*b**3*d**3*e/(2*d**2
*e**5 + 4*d*e**6*x + 2*e**7*x**2) - 48*a*b**3*d**2*e**2*x*log(d/e + x)/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2
) - 48*a*b**3*d**2*e**2*x/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2) - 24*a*b**3*d*e**3*x**2*log(d/e + x)/(2*d**
2*e**5 + 4*d*e**6*x + 2*e**7*x**2) + 8*a*b**3*e**4*x**3/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2) + 12*b**4*d**
4*log(d/e + x)/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2) + 18*b**4*d**4/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2
) + 24*b**4*d**3*e*x*log(d/e + x)/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2) + 24*b**4*d**3*e*x/(2*d**2*e**5 + 4
*d*e**6*x + 2*e**7*x**2) + 12*b**4*d**2*e**2*x**2*log(d/e + x)/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2) - 4*b*
*4*d*e**3*x**3/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x**2) + b**4*e**4*x**4/(2*d**2*e**5 + 4*d*e**6*x + 2*e**7*x*
*2), Eq(m, -3)), (-3*a**4*e**4/(3*d*e**5 + 3*e**6*x) + 12*a**3*b*d*e**3*log(d/e + x)/(3*d*e**5 + 3*e**6*x) + 1
2*a**3*b*d*e**3/(3*d*e**5 + 3*e**6*x) + 12*a**3*b*e**4*x*log(d/e + x)/(3*d*e**5 + 3*e**6*x) - 36*a**2*b**2*d**
2*e**2*log(d/e + x)/(3*d*e**5 + 3*e**6*x) - 36*a**2*b**2*d**2*e**2/(3*d*e**5 + 3*e**6*x) - 36*a**2*b**2*d*e**3
*x*log(d/e + x)/(3*d*e**5 + 3*e**6*x) + 18*a**2*b**2*e**4*x**2/(3*d*e**5 + 3*e**6*x) + 36*a*b**3*d**3*e*log(d/
e + x)/(3*d*e**5 + 3*e**6*x) + 36*a*b**3*d**3*e/(3*d*e**5 + 3*e**6*x) + 36*a*b**3*d**2*e**2*x*log(d/e + x)/(3*
d*e**5 + 3*e**6*x) - 18*a*b**3*d*e**3*x**2/(3*d*e**5 + 3*e**6*x) + 6*a*b**3*e**4*x**3/(3*d*e**5 + 3*e**6*x) -
12*b**4*d**4*log(d/e + x)/(3*d*e**5 + 3*e**6*x) - 12*b**4*d**4/(3*d*e**5 + 3*e**6*x) - 12*b**4*d**3*e*x*log(d/
e + x)/(3*d*e**5 + 3*e**6*x) + 6*b**4*d**2*e**2*x**2/(3*d*e**5 + 3*e**6*x) - 2*b**4*d*e**3*x**3/(3*d*e**5 + 3*
e**6*x) + b**4*e**4*x**4/(3*d*e**5 + 3*e**6*x), Eq(m, -2)), (a**4*log(d/e + x)/e - 4*a**3*b*d*log(d/e + x)/e**
2 + 4*a**3*b*x/e + 6*a**2*b**2*d**2*log(d/e + x)/e**3 - 6*a**2*b**2*d*x/e**2 + 3*a**2*b**2*x**2/e - 4*a*b**3*d
**3*log(d/e + x)/e**4 + 4*a*b**3*d**2*x/e**3 - 2*a*b**3*d*x**2/e**2 + 4*a*b**3*x**3/(3*e) + b**4*d**4*log(d/e
+ x)/e**5 - b**4*d**3*x/e**4 + b**4*d**2*x**2/(2*e**3) - b**4*d*x**3/(3*e**2) + b**4*x**4/(4*e), Eq(m, -1)), (
a**4*d*e**4*m**4*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5
) + 14*a**4*d*e**4*m**3*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 1
20*e**5) + 71*a**4*d*e**4*m**2*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**
5*m + 120*e**5) + 154*a**4*d*e**4*m*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 27
4*e**5*m + 120*e**5) + 120*a**4*d*e**4*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 +
 274*e**5*m + 120*e**5) + a**4*e**5*m**4*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m*
*2 + 274*e**5*m + 120*e**5) + 14*a**4*e**5*m**3*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*
e**5*m**2 + 274*e**5*m + 120*e**5) + 71*a**4*e**5*m**2*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3
 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 154*a**4*e**5*m*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5
*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 120*a**4*e**5*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e
**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) - 4*a**3*b*d**2*e**3*m**3*(d + e*x)**m/(e**5*m**5 + 15*e**5*
m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) - 48*a**3*b*d**2*e**3*m**2*(d + e*x)**m/(e**5*m**
5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) - 188*a**3*b*d**2*e**3*m*(d + e*x)**m
/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) - 240*a**3*b*d**2*e**3*(d +
 e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 4*a**3*b*d*e**4*m
**4*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 48*a**3
*b*d*e**4*m**3*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5
) + 188*a**3*b*d*e**4*m**2*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*
m + 120*e**5) + 240*a**3*b*d*e**4*m*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 +
274*e**5*m + 120*e**5) + 4*a**3*b*e**5*m**4*x**2*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e
**5*m**2 + 274*e**5*m + 120*e**5) + 52*a**3*b*e**5*m**3*x**2*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*
m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 236*a**3*b*e**5*m**2*x**2*(d + e*x)**m/(e**5*m**5 + 15*e**5*m*
*4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 428*a**3*b*e**5*m*x**2*(d + e*x)**m/(e**5*m**5 +
15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 240*a**3*b*e**5*x**2*(d + e*x)**m/(e**5
*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 12*a**2*b**2*d**3*e**2*m**2*(d
+ e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 108*a**2*b**2*d*
*3*e**2*m*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 240
*a**2*b**2*d**3*e**2*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*
e**5) - 12*a**2*b**2*d**2*e**3*m**3*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 +
274*e**5*m + 120*e**5) - 108*a**2*b**2*d**2*e**3*m**2*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3
+ 225*e**5*m**2 + 274*e**5*m + 120*e**5) - 240*a**2*b**2*d**2*e**3*m*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4
+ 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 6*a**2*b**2*d*e**4*m**4*x**2*(d + e*x)**m/(e**5*m**5
 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 60*a**2*b**2*d*e**4*m**3*x**2*(d + e
*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 174*a**2*b**2*d*e**
4*m**2*x**2*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 1
20*a**2*b**2*d*e**4*m*x**2*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m
+ 120*e**5) + 6*a**2*b**2*e**5*m**4*x**3*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2
 + 274*e**5*m + 120*e**5) + 72*a**2*b**2*e**5*m**3*x**3*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3
+ 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 294*a**2*b**2*e**5*m**2*x**3*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4
 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 468*a**2*b**2*e**5*m*x**3*(d + e*x)**m/(e**5*m**5 +
 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 240*a**2*b**2*e**5*x**3*(d + e*x)**m/(
e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) - 24*a*b**3*d**4*e*m*(d + e*x
)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) - 120*a*b**3*d**4*e*(d
+ e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 24*a*b**3*d**3*e
**2*m**2*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 12
0*a*b**3*d**3*e**2*m*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 12
0*e**5) - 12*a*b**3*d**2*e**3*m**3*x**2*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2
+ 274*e**5*m + 120*e**5) - 72*a*b**3*d**2*e**3*m**2*x**2*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3
 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) - 60*a*b**3*d**2*e**3*m*x**2*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4
+ 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 4*a*b**3*d*e**4*m**4*x**3*(d + e*x)**m/(e**5*m**5 +
15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 32*a*b**3*d*e**4*m**3*x**3*(d + e*x)**m
/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 68*a*b**3*d*e**4*m**2*x**
3*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 40*a*b**3*d
*e**4*m*x**3*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) +
4*a*b**3*e**5*m**4*x**4*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 1
20*e**5) + 44*a*b**3*e**5*m**3*x**4*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 27
4*e**5*m + 120*e**5) + 164*a*b**3*e**5*m**2*x**4*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e
**5*m**2 + 274*e**5*m + 120*e**5) + 244*a*b**3*e**5*m*x**4*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m*
*3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 120*a*b**3*e**5*x**4*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85
*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 24*b**4*d**5*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85
*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) - 24*b**4*d**4*e*m*x*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**
4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 12*b**4*d**3*e**2*m**2*x**2*(d + e*x)**m/(e**5*m**
5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 12*b**4*d**3*e**2*m*x**2*(d + e*x)*
*m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) - 4*b**4*d**2*e**3*m**3*x
**3*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) - 12*b**4*d
**2*e**3*m**2*x**3*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e*
*5) - 8*b**4*d**2*e**3*m*x**3*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5
*m + 120*e**5) + b**4*d*e**4*m**4*x**4*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 +
 274*e**5*m + 120*e**5) + 6*b**4*d*e**4*m**3*x**4*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*
e**5*m**2 + 274*e**5*m + 120*e**5) + 11*b**4*d*e**4*m**2*x**4*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5
*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 6*b**4*d*e**4*m*x**4*(d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 +
 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + b**4*e**5*m**4*x**5*(d + e*x)**m/(e**5*m**5 + 15*e**5
*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 10*b**4*e**5*m**3*x**5*(d + e*x)**m/(e**5*m**5
 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 35*b**4*e**5*m**2*x**5*(d + e*x)**m/
(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 50*b**4*e**5*m*x**5*(d + e
*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5) + 24*b**4*e**5*x**5*(
d + e*x)**m/(e**5*m**5 + 15*e**5*m**4 + 85*e**5*m**3 + 225*e**5*m**2 + 274*e**5*m + 120*e**5), True))

________________________________________________________________________________________